

WP5 webinar: Higgs Studies and Long-Lived particles

Dimitris Fassouliotis NKUA

© Copyright 2019 – This project has received funding from the European Union's Horizon 2020 project call H2020-SwafS-2018-2020 funded project Grant Agreement no. 872859

Standard Model of Elementary Particles

Particles of matter - fermions

Carriers of forces - bosons

July 7, 2021

A fluctuation in Higgs vacuum

Condensation of Higgs Boson

Spontaneous electroweak symmetry breaking

Higgs boson Search

Particles coupled with Higgs gain their masses

Higgs boson Search

Main Higgs boson Production Mechanisms at LHC

Decays of the Standard Model Higgs boson

Unfortunately, the higher rate decays have enormous backgrounds and / or not fully reconstructed final state. So two of the most promising channels for the study of the Higgs boson properties:

 $H \rightarrow ZZ(*) \rightarrow \ell^+ \ell^- \ell^+ \ell^-$

$$H \rightarrow \gamma \gamma$$
 2‰

0.14‰

Higgs boson Search

After discovery → Measure properties:

Mass 125.25 ± 0.17 GeV

n

- Spin
- Couplings with other particles
- ➢ Width 3.2 +2.8 −2.2 MeV
- Differential distributions

The Nobel Prize in Physics 2013

François Englert

Peter W. Higgs

<u>Higgs boson Study H→yy</u>

July 7, 2021

<u>Higgs boson Study H→yy</u>

July 7, 2021

<u>Higgs boson Study H→yy</u>

Converted photons

- e⁺e⁻ tracks very close to each other
- e⁺e⁻ originate from instrumented part of inner detector
- Non trivial identification \rightarrow Automated machine learning algorithms

> Challenge 1 "Can human brain compete (or even overpass) automatic algorithms?"

- Proportion of converted photons in $H \rightarrow \gamma \gamma$ decays
- > Challenge 2 "Can human brain identify any of the very rare Higgs boson production mechanisms?"
 - qqH \rightarrow yy + activity in forward region
 - VH \rightarrow $\gamma\gamma$ + additional lepton(s) (e or μ)
 - bbH \rightarrow $\gamma\gamma$ + a lot of activity in central region
 - ttH \rightarrow $\gamma\gamma$ + a lot of activity in central region + additional lepton(s)
- Identify rare final states and rate them accordingly

Search for BSM physics at LHC

Why is there the need for theories Beyond the Standard Model (BSM) ? Several open questions:

- Dark matter
- «Empty» space is unstable
- Flavor & origin of matter
- Masses of neutrinos
- Hierarchy problem
- Inflation
- Quantum gravity
- Dark energy

• • •

Search for BSM physics at LHC

Why is there the need for theories Beyond the Standard Model (BSM) ? Several open questions:

- Dark matter
- «Empty» space is unstable
- Flavor & origin of matter
- Masses of neutrinos
- Hierarchy problem
- Inflation

. . .

- Quantum gravity
- Dark energy

Proposals:

- Supersymmetry
- Grand Unified Theories
- Extra dimensions
- String Theories

Search for BSM physics at LHC

Why is there the need for theories Beyond the Standard Model (BSM) ? Several open questions:

- Dark matter
- «Empty» space is unstable
- Flavor & origin of matter
- Masses of neutrinos
- Hierarchy problem
- Inflation

. . .

- Quantum gravity
- Dark energy

Proposals:

- Supersymmetry
- Grand Unified Theories
- Extra dimensions
- String Theories

However, **no signs** of new physics in "standard" search scenarios at LHC

Large variety of possible signatures

Need of non-standard reconstruction and identification techniques

Concentrate on displaced muons + jets

Concentrate on displaced muons + jets

This scenario signature

Concentrate on displaced muons + jets

This scenario signature

Important Quantities

- \succ Distance of the displaced vertex $R_{DV} \rightarrow Not$ coincide with detectors radius
- > Mass of the particles in the DV \rightarrow > 10 GeV (The higher the more interesting)
- > Muon momentum \rightarrow > 45 GeV (The higher the more interesting)
- \succ Impact parameter of muon d₀ \rightarrow The higher the more interesting
- **Existence of 2nd displaced muon**

July 7, 2021

Concentrate on displaced muons + jets

This scenario signature

Challenge:

Can human brain identify cases that escaped unnoticed from automated algorithms and rate them accordingly?

Important Quantities

- \succ Distance of the displaced vertex $R_{DV} \rightarrow Not$ coincide with detectors radius
- > Mass of the particles in the DV \rightarrow > 10 GeV (The higher the more interesting)
- > Muon momentum \rightarrow > 45 GeV (The higher the more interesting)
- \succ Impact parameter of muon d₀ \rightarrow The higher the more interesting
- **Existence of 2nd displaced muon**

July 7, 2021